
Page Management – Part

One
In this chapter, we will create the forms for page management, and will build a
system for moving the pages around using drag-and-drop.

We will discuss the following topics:

•	 How pages are requested and generated

•	 Listing the pages in the admin area

•	 Administration of pages

Page management will be concluded in the next chapter, where we will discuss
saving the pages, and integrate a rich-text editor and a ile manager.

How pages work in a CMS
As we discussed in Chapter 1, CMS Core Design, a "page" is simply the main content
which should be shown when a certain URL is requested.

In a non-CMS website, this is easy to see, as a single URL returns a distinct HTML
ile. In a CMS though, the page is generated dynamically, and may include features
such as plugins, different views depending on whether the reader was searching for
something, whether pagination is used, and other little complexities.

In most websites, a page is easily identiied as the large content area in the middle
(this is an over-simpliication). In others, it's harder to tell, as the onscreen page may
be composed of content snippets from other parts of the site.

We handle these differences by using page "types", each of which can be rendered
differently on the front-end. Examples of types include gallery pages, forms, news
contents, search results, and so on.

www.eBookTM.Com

Page Management – Part One

[70]

In this chapter, we will create the simplest type, which we will call "normal". This
consists of a content-entry textarea in the admin area, and direct output of that
content on the front-end. You could call this "default" if you want, but since a CMS
is not always used by people from a technical background, it makes sense to use a
word that they are more likely to recognize. I have been asked before by clients what
"default" means, but I've never been asked what "normal" means.

If you remember from the irst chapter, we discussed what should go in the core, and
what should be a plugin.

At the very least, a CMS needs some way to create the simplest of web pages. This is
why the "normal" type is not a plugin, but is built into the core.

Listing pages in the admin area
To begin, we will add Pages to the admin menu. Edit /ww.admin/header.php and
add the following highlighted line:

 Pages

 Users

And one more thing—when we log into the administration part of the CMS, it makes
sense to have the "front page" of the admin area be the Pages section. After all, most
of the work in a CMS is done in the Pages section.

So, we change /ww.admin/index.php so it is a synonym for /ww.admin/pages.php.
Replace the /ww.admin/index.php ile with this:

<?php

require 'pages.php';

Next, let's get started on the Pages section.

First, we will create /ww.admin/pages.php:

<?php

require 'header.php';

echo '<h1>Pages</h1>';

// { load menu

echo '<div class="left-menu">';

require 'pages/menu.php';

echo '</div>';

// }

// { load main page

echo '<div class="has-left-menu">';

require 'pages/forms.php';

www.eBookTM.Com

Chapter 3

[71]

echo '</div>';

// }

echo '<style type="text/css">

 @import "pages/css.css";</style>';

require 'footer.php';

Notice how I've commented blocks of code, using // { to open the comment at the
beginning of the block, and // } at the end of the block.

This is done because a number of text editors have a feature called "folding", which
allows blocks enclosed within delimiters such as { and } to be hidden from view,
with just the irst line showing.

For instance, the previous code example looks like this in my Vim editor:

What the page.php does is to load the headers, load the menu and page form, and
then load the footers. There will be more added later in this chapter.

For now, create the directory /ww.admin/pages and create a ile in it called /
ww.admin/pages/forms.php:

<h2>FORM GOES HERE</h2>

And now we can create the page menu. Use the following code to create the ile /
ww.admin/pages/menu.php:

<?php

echo '<div id="pages-wrapper">';

$rs=dbAll('select id,type,name,parent from pages order by ord,name');

$pages=array();

foreach($rs as $r){

 if(!isset($pages[$r['parent']]))$pages[$r['parent']]=array();

 $pages[$r['parent']][]=$r;

}

www.eBookTM.Com

Page Management – Part One

[72]

function show_pages($id,$pages){

 if(!isset($pages[$id]))return;

 echo '';

 foreach($pages[$id] as $page){

 echo '<li id="page_'.$page['id'].'">'

 .''

 .'<ins> </ins>'.htmlspecialchars($page['name'])

 .'';

 show_pages($page['id'],$pages);

 echo '';

 }

 echo '';

}

show_pages(0,$pages);

echo '</div>';

That will build up a tree of pages.

Note the use of the "parent" ield in there. Most websites follow a hierarchical
"parent-child" method of arranging pages, with all pages being a child of either
another page, or the "root" of the site. The parent ield is illed with the ID of the page
within which it is situated.

There are two main ways to indicate which page is the "front" page (that is, what
page is shown when someone loads up http://cms/ with no page name indicated).

1. You can have one single page in the database which has a parent of 0,
meaning that it has no parent—this page is what is looked for when http://
cms/ is called. In this scheme, pages such as http://cms/pagename have
their parent ield set to the ID of the one page which has a parent of 0.

2. You can have many pages which have 0 as their parent, and each of these
is said to be a "top-level" page. One page in the database has a lag set in
the special ield which indicates that this is the front page. In this scheme,
pages named like http://cms/pagename all have a parent of 0, and the page
corresponding to http://cms/ can be located anywhere at all in the database.

Case 1 has a disadvantage, in that if you want to change what page is the front page,
you need to move the current page under another one (or delete it), then move all the
current page's child-pages so they have the new front page's ID as a parent, and this
can get messy if the new front-page already had some sub-pages—especially if there
are any with the same names.

Case 2 is a much better choice because you can change the front page whenever you
want, and it doesn't cause any problems at all.

www.eBookTM.Com

Chapter 3

[73]

When you view the site in your browser now, it looks like this (based on the pages
we created manually back in Chapter 1, CMS Core Design):

Hierarchical viewing of pages
Let's update the database slightly so that we can see the hierarchy of the site
pages visually.

Go to your MySQL console, and change the Second Page so that its parent ield is
the ID of the Home page:

mysql> select id,name,parent from pages;

+----+-------------+--------+

| id | name | parent |

+----+-------------+--------+

| 24 | Home | 0 |

| 25 | Second Page | 0 |

+----+-------------+--------+

2 rows in set (0.00 sec)

mysql> update pages set parent=24 where id=25;

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

www.eBookTM.Com

Page Management – Part One

[74]

After the update, we refresh the site in the browser:

You can see the Second Page has indented slightly because it is now a child page of
Home, and is contained in a sub- in the HTML.

We can improve on this vastly, though.

There is a jQuery plugin called jstree which re-draws trees in a way that is
more familiar to users of visual ile managers.

It also has the added features that you can drag the tree nodes around, and attach
events to clicks on the nodes.

We will use these features later in the chapter to allow creation and deletion of pages,
and changing of page parents through drag-and-drop.

Create the directory /j/ in the root of the website.

Remember that we indicated in the irst chapter that the CMS directories would all
include dots in them, unless they were less than three characters long.

One of the reasons we name this directory /j/ instead of /ww.javascript/, is that
it is short, thus saving a few bytes of bandwidth for the end-user, who may be using
something bandwidth-light such as a smartphone.

This may not be a big deal, but if we got into the habit of making small shortcuts
like this whenever possible, then the small shortcuts would eventually add up to a
second or two of extra speed.

Every unnoticeable optimization can help to make a noticeable one when combined
with many more.

www.eBookTM.Com

Chapter 3

[75]

Anyway—create the /j/ directory, and download the jstree script from http://
jstree.com/ such that when extracted, the jquery.tree.js ile is located at /j/
jquery.jstree/jquery.tree.js.

I have used version 0.9.9a in the CMS described in this book.

Now edit /ww.admin/pages/menu.php and add the following highlighted lines
before the irst line:

<script src="/j/jquery.jstree/jquery.tree.js"></script>

<script src="/ww.admin/pages/menu.js"></script>

<?php

And create the ile /ww.admin/pages/menu.js:

$(function(){

 $('#pages-wrapper').tree();

});

And immediately, we have a beautiied hierarchical tree, as seen in the following
screenshot:

If you try, you'll see that you can drag those page names around, with little icons and
signs indicating where a page can be dropped, as shown in the next two screenshots:

www.eBookTM.Com

Page Management – Part One

[76]

Before we get into the actual editing of pages, let's improve on this menu one last time.
We will add a button to indicate we want to create a new top-level page, and we will
also record drag-and-drop events so that they actually do move the pages around.

Change the /ww.admin/pages/menu.js ile to this:

$(function(){

 $('#pages-wrapper').tree({

 callback:{

 onchange:function(node,tree){

 document.location='pages.php?action=edit&id='

 +node.id.replace(/.*_/,'');

 },

 onmove:function(node){

 var p=$.tree.focused().parent(node);

 var new_order=[],nodes=node.parentNode.childNodes;

 for(var i=0;i<nodes.length;++i)

 new_order.push(nodes[i].id.replace(/.*_/,''));

 $.getJSON('/ww.admin/pages/move_page.php?id='

 +node.id.replace(/.*_/,'')+'&parent_id='

 +(p==-1?0:p[0].id.replace(/.*_/,''))

 +'&order='+new_order);

 }

 }

 });

 var div=$(

 '<div><i>right-click for options</i>

</div>');

 $('<button>add main page</button>')

 .click(pages_add_main_page)

 .appendTo(div);

 div.appendTo('#pages-wrapper');

});

function pages_add_main_page(){}

We've added a few pieces of functionality to the tree here.

First, we have the onchange callback.

When a tree node (a page name) is clicked, the browser is redirected to pages.
php?edit= with the page's ID at the end-note that when creating the tree, we
added an ID to every , such that a page with the ID 24 would have an with
the ID page_24.

So, all we need to do when a node (the) is clicked, is to remove the page_ part,
and use that to open up page.php for editing that page.

www.eBookTM.Com

Chapter 3

[77]

Second, we added an onmove callback. This is called after a drag-and-drop event has
completed.

What we do in this is slightly more complex—we get the new parent's ID, and we
make an array which records the IDs of all its direct descendant child pages. We then
send all that data to /ww.admin/pages/move_page.php, which we'll create in just a
moment.

Finally, we've added a message to right-click on the tree for further functionality,
which we'll detail later in the chapter, and a button to create a new top-level page,
which we'll also detail later in the chapter. A dummy function needs to be added so
this code will run without error. We'll replace it with a real one later.

Moving and rearranging pages
Now when you drag a page name to a different place on the tree, an Ajax call is
made to /ww.admin/pages/move_page.php, with some details included in the call.

Here's a screenshot showing (using Firebug) what is sent in a sample drag:

www.eBookTM.Com

Page Management – Part One

[78]

We are sending the page ID (25), the new parent ID (0), and the new page order of
pages which have the parent ID 0 (25, 24).

So, let's create /ww.admin/pages/move_page.php:

<?php

require '../admin_libs.php';

$id=(int)$_REQUEST['id'];

$to=(int)$_REQUEST['parent_id'];

$order=explode(',',$_REQUEST['order']);

dbQuery('update pages set parent='.$to.' where id='.$id);

for($i=0;$i<count($order);++$i){

 $pid=(int)$order[$i];

 dbQuery("update pages set ord=$i where id=$pid");

 echo "update pages set ord=$i where id=$pid\n";

}

Simple! It records exactly what it was sent.

Administration of pages
Okay—we now have a list of the existing pages. Let's add some functionality
to edit them.

The form for creating a page is a bit long, so what we'll do is to build it up a bit
at a time, explaining as we go. Replace the ile /ww.admin/pages/forms.php
with the following:

<?php

if(isset($_REQUEST['id']))$id=(int)$_REQUEST['id'];

else $id=0;

if($id){ // check that page id exists

 $page=dbRow("SELECT * FROM pages WHERE id=$id");

 if($page!==false){

 $page_vars=json_decode($page['vars'],true);

 $edit=true;

 }

}

if(!isset($edit)){

 $parent=isset($_REQUEST['parent'])?

 (int)$_REQUEST['parent']:0;

 $special=0;

 if(isset($_REQUEST['hidden']))$special+=2;

 $page=array('parent'=>$parent,'type'=>'0','body'=>'',

www.eBookTM.Com

Chapter 3

[79]

 'name'=>'','title'=>'','ord'=>0,'description'=>'',

 'id'=>0,'keywords'=>'','special'=>$special,

 'template'=>'');

 $page_vars=array();

 $id=0;

 $edit=false;

}

What the given code does is to initialize an array named $page for the main page
details, and another named page_vars for any custom details that are not part of the
main page table—for example, data recorded as part of a plugin.

If an ID is passed as part of the URL, then that page's data is loaded.

As an example, if I add the line var_dump($page); and then load up /ww.admin/
pages.php?action=edit&id=25 in my browser (a page which exists in my
database), this is what's shown:

This shows all the data about that page available in the database table.

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.eBookTM.Com

Page Management – Part One

[80]

If the ID passed in the URL is 0, or any other ID which does not correspond
to an existing page ID, then we still initialize $page but with empty values:

Because pages can get quite complex, especially when we add in different page types
using plugins later in the book, we break the page form into different tabs.

For the "normal" page type, we will have two tabs—common details, and advanced
options.

The common details tab will contain options that are changed very often, such as
page name, page content, and so on.

The advanced options tab will contain more rarely-changed options such as
meta tags, templates, and so on. We call it "advanced", but that's only because
"rarely changed options" doesn't sound as concise, and also because most website
administrators will not know what to do with some of these options.

So, let's add the tab menu to /ww.admin/pages/forms.php:

// { if page is hidden from navigation, show a message saying that

if($page['special']&2)

 echo 'NOTE: this page is currently hidden from the

 front-end navigation. Use the "Advanced Options" to

 un-hide it.';

// }

echo '<form id="pages_form" method="post">';

echo '<input type="hidden" name="id" value="',$id,'" />'

 ,'<div class="tabs">'

 ,'Common Details'

 ,'Advanced Options'

www.eBookTM.Com

Chapter 3

[81]

 ;

// add plugin tabs here

echo '';

Above the page form, we display a small message if the page we're viewing is
currently not visible in the navigation menu on the front-end of the site—if the
special ield has its 2 bit lagged, then that means that the page is not shown in the
navigation menu.

Bitmasks are useful for when you have "yes/no" values and don't want to take up a
whole database ield for each value.

After this, we open the form.

Note that an action parameter is not provided in my code. Although the W3C HTML
4.01 speciication says that the action is required, no browsers actually enforce this. If
a browser comes across a form which has no action, then it defaults to the same page.

This is also true of <style>, where type defaults to text/css, and <script>, where
type defaults to javascript.

Next we display the tab menu, which is the list of tabs to be shown.

Note the second-last line, which is a comment about plugin tabs. When we get to
plugins in a later chapter, some of them may have enough extra options that they
need a new tab on the page form. We'll handle that when we get to it.

Next, let's add the common details tab to the same ile:

// { Common Details

echo '<div id="tabs-common-details"><table

 style=“clear:right;width:100%;”><%;”>< tr>‘;

// { name

echo '<th width="5%">name</th><td width="23%">

 <input

 id="name" name="name"

 value="',htmlspecialchars($page['name']),'" /></td>';

// }

// { title

echo '<th width="10%">title</th><td width="23%">

 <input

 name="title"

 value="',htmlspecialchars($page['title']),'" /></td>';

// }

// { url

echo '<th colspan="2">';

www.eBookTM.Com

Page Management – Part One

[82]

if($edit){

 $u='/'.str_replace(' ','-',$page['name']);

 echo '<a style="font-weight:bold;color:red" href="',$u

 ,'" target="_blank">VIEW PAGE';

}

else echo ' ';

echo '</th>';

// }

echo '</tr><tr>';

// { type

echo '<th>type</th><td><select name="type"><option

 value="0">normal</option>';

// insert plugin page types here

echo '</select></td>';

// }

// { parent

echo '<th>parent</th><td><select name="parent">';

if($page['parent']){

 $parent=Page::getInstance($page['parent']);

 echo '<option value="',$parent->id,'">'

 ,htmlspecialchars($parent->name),'</option>';

}

else echo '<option value="0"> -- ','none',' -- </option>';

echo '</select>',"\n\n",'</td>';

// }

if(!isset($page['associated_date']) || !preg_match(

 '/^[0-9]{4}-[0-9]{2}-[0-9]{2}$/',$page['associated_date']

) || $page['associated_date']=='0000-00-00'

 $page['associated_date']=date('Y-m-d');

echo '<th>Associated Date</th><td><input

 name="associated_date" class="date-human" value="',

 $page['associated_date'],'" /></td>';

echo '</tr>';

// }

// { page-type-specific data

echo '<tr><th>body</th><td colspan="5">';

echo '<textarea name="body">',

 htmlspecialchars($page['body']),'</textarea>';

echo '</td></tr>';

// }

echo '</table></div>';

// }

www.eBookTM.Com

Chapter 3

[83]

The given code shows the commonly changed details of the page database table.
They include:

•	 name

•	 title

•	 type

•	 parent

•	 associated_date

•	 body

We'll enhance a few of those after we've inished the form. For now, a few things
should be noted about the form and its options.

•	 URL: When you are editing a page, it's good to view it in another window or
tab. To do this, we provide a link to the front-end page. Clicking on the link
opens a new tab or window.

•	 Type: The page type by default is "normal", and in the select-box we built
previously, that is the only option. We will enhance that when we get to
plugins in a later chapter.

•	 Parent: This is the page which the currently edited page is contained within.
In the earlier form, we display only the current parent, and don't provide any
other options. There's a reason for that which we'll explain after we inish the
main form HTML.

•	 Associated date: There are a number of dates associated with a page. We
record the created and last-edited date internally (useful for plugins or
logging), but sometimes the admin wants to record a date speciic to the
page. For example, if the page is part of a news system, we will enhance this
date input box after the form is completed.

•	 Body: This is the content which will be shown on the front-end. It's plain
HTML. Of course, writing HTML for content is not a task you should push
on the average administrator, so we will enhance that.

www.eBookTM.Com

Page Management – Part One

[84]

Here's a screenshot of the irst tab (I've temporarily completed the jQuery tabs to get
this shot—we'll do it in the chapter later on):

You can see that the date input box is quite large. There's a reason for that, which
we'll see in the next chapter.

The second tab will be a bit shorter. Let's add that now. Add the following code to
the /ww.admin/pages/forms.php ile:

// { Advanced Options

echo '<div id="tabs-advanced-options">';

echo '<table><tr><td>';

// { metadata

echo '<h4>MetaData</h4><table>';

echo '<tr><th>keywords</th><td>

 <input name="keywords"

 value="',htmlspecialchars($page['keywords']),'"

 /></td></tr>';

echo '<tr><th>description</th><td>

 <input name="description"

 value="',htmlspecialchars($page['description']),'"

 /></td></tr>';

www.eBookTM.Com

Chapter 3

[85]

// { template

// we'll add this in the next chapter

// }

echo '</table>';

// }

echo '</td><td>';

// { special

echo '<h4>Special</h4>';

$specials=array('Is Home Page',

 'Does not appear in navigation');

for($i=0;$i<count($specials);++$i){

 if($specials[$i]!=''){

 echo '<input type="checkbox" name="special[',$i,']"';

 if($page['special']&pow(2,$i))echo ' checked="checked"';

 echo ' />',$specials[$i],'
';

 }

}

// }

// { other

echo '<h4>Other</h4>';

echo '<table>';

// { order of sub-pages

echo '<tr><th>Order of sub-pages</th><td><select name="page_
vars[order_of_sub_pages]">';

$arr=array('as shown in admin menu','alphabetically',

 'by associated date');

foreach($arr as $k=>$v){

 echo '<option value="',$k,'"';

 if(isset($page_vars['order_of_sub_pages']) &&

 $page_vars['order_of_sub_pages']==$k)

 echo ' selected="selected"';

 echo '>',$v,'</option>';

}

echo '</select>';

echo '<select name="page_vars[order_of_sub_pages_dir]">

 <option value="0">ascending (a-z, 0-9)</option>';

echo '<option value="1"';

if(isset($page_vars['order_of_sub_pages_dir']) &&

 $page_vars['order_of_sub_pages_dir']=='1')

 echo ' selected="selected"';

echo '>descending (z-a, 9-0)</option></select></td></tr>';

// }

echo '</table>';

// }

echo '</td></tr></table></div>';

// }

www.eBookTM.Com

Page Management – Part One

[86]

There's not a lot to explain here. There are some extra "advanced" options which
I've not added here, which are useful for the system when it's been more completed
(plugins added, themes or templates completed, and so on).

First, we add inputs for keywords and description meta-data. Most people appear to
leave these alone, which is why it's not on the front tab.

We will add templates and themes in the next chapter. For now, I've added a
commented placeholder.

After this, we show a list of "specials". I've included just two here—a marker to say
whether the current page is the home page, and another marker to indicate that the
page should not appear in front-end navigation.

Finally (for now), we show two drop-down boxes, to let the administrator decide
what order the current page's sub-pages should be shown in the front-end
navigation. For example, you might want a list of authors to be alphabetical or new
items to appear by date descending, but in most cases you will want the pages to
appear in the same order as they appear in the admin area (which you can change by
dragging page names in the navigation menu on the left-hand side).

Okay—now let's complete the form and add in the tabs code.

www.eBookTM.Com

Chapter 3

[87]

There is one more section which we could add—some plugins might want to add
tabs to this form. We'll get to that later in the book.

Add this code to the ile /ww.admin/pages/forms.php:

echo '</div><input type="submit" name="action" value="',

 ($edit?'Update Page Details':'Insert Page Details')

 ,'" /></form>';

echo '<script>window.currentpageid='.$id.';</script>';

echo '<script src="/ww.admin/pages/pages.js"></script>';

And let's create the ile /ww.admin/pages/pages.js:

$(function(){

 $('.tabs').tabs();

});

The window.currentpageid variable will be used in the next section.

That completes the basics of the form.

Next, let's look at those inputs we highlighted earlier as needing some enhancements.

Filling the parent selectbox asynchronously
In very large websites, it can sometimes be very slow to load up the Page form,
because of the "parents" drop-down. This select-box tells the server what page the
current page is located under.

If you ill that at the time of loading the form, then the size of the downloaded HTML
can be quite large.

A solution for this problem was developed for my previous book (jQuery 1.3 with
PHP), and as part of that book, the solution was packaged into a jQuery plugin
which solves the problem here.

Download the remoteselectoptions plugin from http://plugins.jquery.com/
project/remoteselectoptions and unzip it in your /j/ directory.

What this plugin does, is that in the initial load of your page's HTML, you enter
just one option in the select-box, and it will get the rest of the options only when it
becomes necessary (that is, when the select-box is clicked).

www.eBookTM.Com

Page Management – Part One

[88]

To get this to work with the parents select-box, change the /ww.admin/pages/
pages.js ile to this:

$(function(){

 $('.tabs').tabs();

 $('#pages_form select[name=parent]').remoteselectoptions({

 url:'/ww.admin/pages/get_parents.php',

 other_GET_params:currentpageid

 });

});

And because this plugin is useful for quite a few places in the admin, let's add it to /
ww.admin/header.php (the highlighted line):

<script src="http://ajax.googleapis.com/ajax/libs

 /jqueryui/1.8.0/jquery-ui.min.js"></script>

<script src="/j/jquery.remoteselectoptions

 /jquery.remoteselectoptions.js"></script>

<link rel="stylesheet" href="http://ajax.googleapis.com/ajax

 /libs/jqueryui/1.8.0/themes/south-street/jquery-ui.css"

 type="text/css" />

And you can see from the pages.js ile that another ile is required to build up the
actual list of page names. Create this as /ww.admin/pages/get_parents.php:

<?php

require '../admin_libs.php';

function page_show_pagenames($i=0,$n=1,$s=0,$id=0){

 $q=dbAll('select name,id from pages where parent="'

 .$i.'" and id!="'.$id.'" order by ord,name');

 if(count($q)<1)return;

 foreach($q as $r){

 if($r['id']!=''){

 echo '<option value="'.$r['id'].'" title="'

 .htmlspecialchars($r['name']).'"';

 echo($s==$r['id'])?' selected="selected">':'>';

 for($j=0;$j<$n;$j++)echo ' ';

 $name=$r['name'];

 if(strlen($name)>20)$name=substr($name,0,17).'...';

 echo htmlspecialchars($name).'</option>';

 page_show_pagenames($r['id'],$n+1,$s,$id);

 }

 }

}

$selected=isset($_REQUEST['selected'])

www.eBookTM.Com

Chapter 3

[89]

 ?$_REQUEST['selected']:0;

$id=isset($_REQUEST['other_GET_params'])

 ?(int)$_REQUEST['other_GET_params']:-1;

echo '<option value="0"> -- none -- </option>';

page_show_pagenames(0,0,$selected,$id);

The remoteselectoptions plugin sends a query to this page, with two
parameters—the currently selected parent's ID, and the current page ID.

The previous code builds up an option list, taking care to not allow the admin
to choose to place a page within itself, or within any page which is contained
hierarchically under itself. That would make the page disappear from all navigation,
including the admin navigation.

For the current example, that means that the only options available are either none
(that is, the page is a top-level one), or Second Page, as in our example, there are
currently only two pages, and obviously you can't place Home under Home.

Okay—we've done enough now that you can take a break before we start on the next
chapter, where we'll inish off page creation.

Summary
In this chapter, we built the basics of page management, including creation of
the form for page management, and a few jQuery tools for making page location
management easy and improving the selection of large select-boxes.

In the next chapter, we will complete the page management section, and build a
simple menu system for the front-end so we can navigate between pages.

www.eBookTM.Com

